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Abstract. The jam phenomenon in traffic flow wastes not only considerable traffic-transportation time but
also great amounts of fuel due to many accelerate-decelerate actions. From traffic-economic and traffic-
pollution viewpoints, the suppression of traffic jam is an important issue we have to solve. The present
paper shows that H∞-norm, which has been used in the field of control theory, can reveal the traffic
jam phenomenon in an optimal velocity traffic model under an open boundary condition. Furthermore,
we suppress the traffic jam in the model by the decentralized delayed-feedback control method. Some
numerical simulations are shown to verify our theoretical results.

PACS. 45.70.Vn Granular models of complex systems; traffic flow – 05.45.Gg Control of chaos; applications
of chaos – 47.62.+q Flow control

1 Introduction

The traffic flow problems have been widely investigated in
the field of physics [1–15]. Several traffic flow models have
been proposed: coupled differential equation models [1–8],
coupled map models [9–11], and cellular automata [12–15].
Bando et al. proposed a car-following traffic model whose
individual vehicle is described by a simple nonlinear equa-
tion [1]. The vehicle equation is governed by the opti-
mal velocity (OV) function which depends only on the
headway distance: an individual driver controls his vehi-
cle velocity on the basis of the OV function. This model
is called optimal velocity (OV) traffic model. The pa-
per [1] investigated a traffic jam phenomenon under peri-
odic boundary conditions, and derived a simple stability
condition. Komatsu and Sasa examined the traffic jam on
the OV model in detail [2]. The OV traffic model was mod-
ified as follows: taking into account the delay effect [3–5],
modification to be simple and solvable [6], generaliza-
tion of the model [7], investigation of the open bound-
ary condition [8], and proposal of a discrete-time version
model [9–11].

Controlling chaos has gathered much attention of
many researchers who are interested in nonlinear dynam-
ics and its applications [16,17]. A delayed-feedback control
(DFC) method was proposed as a convenient tool for con-
trolling real chaotic systems [18]. The DFC method does
not require a reference signal which is a desired unstable
periodic orbit. This feature is a great advantage for ex-
perimental situations. The DFC method was successfully
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used to many physical systems [17]. Several researchers
investigated the stability of the DFC system [19–22], and
discussed a discrete-time version of the method [23–28].
Most of these studies focused on the stabilization of tem-
poral chaos in low-dimensional systems; on the other
hand, investigations of spatiotemporal chaotic behavior
and its control have attracted much interest recently [29].
The DFC method was modified to stabilize the spatiotem-
poral chaotic systems [30–32]. The modified method is the
decentralized delayed-feedback control (DDFC) method.
Very recently, Konishi, Kokame, and Hirata proposed a
dynamic version of the DDFC method, and applied it to
suppress the traffic jam in a discrete-time piece-wise linear
OV model [33].

Although the mechanism and features of the traffic
jam phenomenon in the OV traffic model have been re-
vealed by several theoretical and numerical investigations,
to our knowledge, we cannot find the studies on sup-
pression of the phenomenon except the paper [33]. The
jam phenomenon wastes not only considerable traffic-
transportation time but also great amounts of fuel due
to many accelerate-decelerate actions; hence, from traffic-
economic and traffic-pollution viewpoints, the suppression
of traffic jam should be regarded as an important issue we
have to investigate. The present paper shows that H∞-
norm, which has been used in the field of control theory,
is a useful tool to analyze the traffic jam phenomenon in
the OV traffic models under an open boundary condition.
Furthermore, we suppress the traffic jam in the OV traffic
model by the continuous-time DDFC method.

This paper is organized as follows. Section 2 ex-
plains the OV traffic model, and analyzes its stability.
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Fig. 1. Illustration of the OV traffic model under an open
boundary.

In Section 3, the continuous-time DDFC method is intro-
duced for the suppression of traffic jam, and we give a sim-
ple numerical procedure for design of the control system.
Section 4 shows numerical simulations to verify the the-
oretical results. Finally, conclusions are presented in
Section 5.

2 Optimal velocity traffic model

2.1 Description of model

Let us consider the optimal velocity (OV) traffic model
under an open boundary condition (see Fig. 1). The lead
vehicle is described as

x0(t) = v0t+ x0(0),

where x0(t) > 0 is the position of the leading vehicle, v0 >
0 is its velocity, and x0(0) > 0 is the initial position. We
assume that the lead vehicle is not influenced by others.
The following vehicles are given as

d2xi(t)
dt2

= a

{
F (yi(t))−

dxi(t)
dt

}
,

yi(t) = xi−1(t)− xi(t),
(i = 1 ∼ N),

(1)

where xi(t) > 0 is the position of the ith vehicle, yi(t) > 0
is the headway distance between the (i − 1)th and ith
vehicles, a > 0 is the sensitivity of driver, and N is the
number of the following vehicles. F (yi(t)) is the optimal
velocity (OV) function which depends only on the head-
way distance yi(t).

For the OV models in open boundary conditions, most
researchers investigated the vehicle behavior on a road
with a finite length: the vehicles enter at the lower bound-
ary of the road and leave at the upper boundary [8,11].
It is not easy to describe the whole system by a simple
mathematical form. Hence, in this paper, we focus on the
behavior of a vehicle group which consists of vehicles run-
ning on a single road without overtaking. System (1) de-
scribes such a vehicle group. This is because the group
behavior can be treated as the behavior of a group in a
long distance traffic road with the open boundary con-
dition. Furthermore, our vehicle group can be described
by a simple dynamical equation. From the above reasons,

we believe that it is important to reveal the traffic jam
mechanism in our traffic system (1).

Letting the velocity of the ith vehicle, dxi(t)/dt, be
denoted by vi(t), vehicle dynamics (1) takes the following
form:

dvi(t)
dt

= a {F (yi(t))− vi(t)} ,

dyi(t)
dt

= vi−1(t)− vi(t),
(i = 1 ∼ N). (2)

We shall consider vehicle dynamics (2) instead of (1)
throughout this paper. Assume that the lead vehicle runs
constantly with speed v0, then dynamics (2) has the fol-
lowing steady state:

[v∗i (t) y∗i (t)]T =
[
v0 F−1(v0)

]T
. (3)

This state implies that all the vehicles run orderly with
velocity v0 and headway distance F−1(v0). Since dynam-
ics (2) has the one-way connection, stability of whole sys-
tem can be reduced to stability of steady state (3) and
transfer function of (2).

2.2 Stability analysis

The linearized system of vehicle system (2) around steady
state (3) is

dvi(t)
dt

= a {Λyi(t)− vi(t)} ,

dyi(t)
dt

= vi−1(t)− vi(t),
(i = 1 ∼ N), (4)

where

vi(t) := vi(t)− v0, yi(t) := yi(t)− F−1(v0).

Λ is the slope of the OV function at yi(t) = F−1(v0) :

Λ :=
∂F (y)
∂y

∣∣∣∣
y=F−1(v0)

.

From a control theory viewpoint, dynamics (4) can be
written as an linear time-invariant system, that is

[
dvi(t)/dt
dyi(t)/dt

]
=

[
−a aΛ
−1 0

][
vi(t)
yi(t)

]
+

[
0
1

]
vi−1(t),

vi(t) =
[

1 0
] [ vi(t)

yi(t)

]
.

(5)

The relation between the (i − 1)th vehicle velocity dis-
turbance and the ith vehicle velocity disturbance is de-
scribed by

Vi(s) = G(s)Vi−1(s), (6)
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where

Vi(s) := L[vi(t)], Vi−1(s) := L[vi−1(t)].

L denotes the Laplace transformation. The transfer func-
tion G(s) is

G(s) =
[

1 0
] [ s+ a −aΛ

1 s

]−1 [
0
1

]

=
aΛ

d(s)
,

where the characteristic polynomial d(s) is

d(s) := s2 + as+ aΛ.

In order to simplify our discussion, we give a definition of
traffic jam for the OV traffic model.

Definition 1. Assume that characteristic polynomial d(s)
is stable. If H∞-norm of G(s) is greater than 1, that is

‖G(s)‖∞ := sup
ω∈[0,+∞)

|G(jω)| > 1,

then traffic jam occurs in the OV traffic model.
Now we shall explain Definition 1 in detail. Suppose

that the 1, 2, . . . , (i − 1)th vehicles constantly run with
speed v0. The stability of the polynomial d(s) is the nec-
essary and sufficient condition for steady state (3) to
be stable. It is obvious that the ith vehicle can follow
the preceding vehicles with velocity v0 only when steady
state (3) is stable. However, this condition does not guar-
antee that the ith vehicle runs constantly with velocity
v0 when the preceding vehicles velocities fluctuate. Let us
assume that the (i − 1)th vehicle velocity is disturbed as
vi−1(t) = v0 + δi−1 sin (ωt), where δi−1 is a small posi-
tive amplitude. Then the ith vehicle velocity disturbance
is given as vi(t) = v0 + δi sin (ωt+ θi(i−1)). The amplitude
ratio of δi to δi−1 can be described as

δi
δi−1

= |G(jω)| .

For instance, consider the pth and qth vehicles (q > p).
The amplitude ratio of δq to δp is

δq
δp

= |G(jω)|q−p (q > p). (7)

Let us consider the following three cases: (i) |G(jω)| < 1,
(ii) |G(jω)| = 1, (iii) |G(jω)| > 1. For case (i), the ampli-
tude ratio decreases about exponentially with q − p (see
Eq. (7)). Therefore, if the sinusoidal disturbance with an-
gular frequency ω is added to an upper vehicle, this distur-
bance has little effect on lower vehicles. For case (iii), the
amplitude ratio increases about exponentially with q − p.
If a tiny sinusoidal disturbance with angular frequency ω
is added to an upper vehicle, the lower vehicles are signifi-
cantly influenced by this disturbance. In this case, we can

observe the traffic jam phenomenon in the lower vehicle
group. For case (ii), this disturbance at an upper vehicle is
constantly propagated for all the vehicles. For real traffic
systems, we have to consider the external disturbance for
all ω ∈ [0,+∞). As a result, we notice that if

‖G(s)‖∞ > 1, (8)

then traffic jam occurs in the lower vehicle group. On the
contrary, if d(s) is a stable polynomial and condition (8)
is not satisfied, we cannot observe the traffic jam phe-
nomenon. Now we show a simple condition under which
traffic jam never occurs.

Lemma 1. If the following condition is satisfied:

2Λ < a, (9)

then the traffic jam never occurs in the OV traffic model.

Proof. From Definition 1, we know that the traffic jam
never occurs when the following two conditions are satis-
fied: (1) ‖G(s)‖∞ is 1 or less; (2) d(s) is a stable polyno-
mial. The absolute value of the transfer function G(jω) is

|G(jω)| =
√
G(jω)G(−jω)

=
√
a2Λ2/g(ω),

where g(ω) = (aΛ−ω2)2+ω2a2. Condition (1) holds if the
following three conditions are satisfied: (1-1) |G(j0)| = 1;
(1-2) |G(j∞)| = 0; (1-3) ∂g(ω)/∂ω 6= 0 for all ω ∈ (0,∞).
It is obvious that conditions (1-1) and (1-2) are satisfied
for any parameters. Condition (1-3) can be described as
∂g(ω)/∂ω = 2ω(2ω2 + a2 − 2aΛ) 6= 0 for all ω ∈ (0,∞).
This is satisfied if and only if condition (9) holds. Further-
more, condition (2) is always satisfied when condition (9)
holds. �

It should be noted that condition (9) is the same as the
stability of the OV traffic model under periodic boundary
conditions derived in [1].

3 Suppression of traffic jam

Let us add a control signal term, ui(t), to vehicle dynam-
ics (1):

d2xi(t)
dt2

= a

{
F (yi(t))−

dxi(t)
dt

}
+ ui(t),

yi(t) = xi−1(t)− xi(t),
(i = 1 ∼ N),

where the control signal ui(t) is

ui(t) = k (yi(t)− yi(t− τ)) . (10)

k, τ are the feedback gain and delay time respectively. The
control signal ui(t) is proportional to the difference be-
tween the present headway distance y(t) and the past one
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y(t− τ). System (5) can be rewritten as
dvi(t)

dt
= a {F (yi(t))− vi(t)}+ ui(t),

dyi(t)
dt

= vi−1(t)− vi(t),
(i = 1 ∼ N).

(11)

Control system (11) is a continuous-time version of the
DDFC proposed in [30]. We note that the control sig-
nal ui(t) vanishes when the ith vehicle is running with
a constant velocity. Around the steady state (3), control
system (11) and controller (10) are written as a linear
time-invariant system, that is

[
dvi(t)/dt
dyi(t)/dt

]
=

[
−a aΛ
−1 0

][
vi(t)
yi(t)

]

+

[
0
1

]
vi−1(t) +

[
1
0

]
ui(t),

vi(t) =
[

1 0
] [ vi(t)

yi(t)

]
,

yi(t) =
[

0 1
] [ vi(t)

yi(t)

]
,

where

ui(t) = k (yi(t)− yi(t− τ))
= k (yi(t)− yi(t− τ)) .

From frequency domain viewpoint, this linearized system
can be written as

Vi(s) = G11(s)Vi−1(s) +G12(s)Ui(s),

Yi(s) = G21(s)Vi−1(s) +G22(s)Ui(s),

Ui(s) = H(s)Yi(s),

where

Yi(s) := L[yi(t)], Ui(s) := L[ui(t)],

G11(s) :=
aΛ

d(s)
, G12(s) :=

s

d(s)
,

G21(s) :=
s+ a

d(s)
, G22(s) := − 1

d(s)
,

H(s) := k(1− e−sτ ).

Figure 2 illustrates the block diagram of this control
system. The relation between Vi−1(s) and Vi(s) is de-
scribed as

Vi(s) = G(s)Vi−1(s). (12)

The transfer function G(s) is given by

G(s) = G11(s) +G12(s)H(s) (1−G22(s)H(s))−1
G12(s)

=
aΛ+ k(1− e−sτ )
d(s) + k(1− e−sτ )

·

Vi−1(s) Vi (s)

H(s)

Vi (s) = G11(s)Vi−1(s) + G12(s)Ui(s)
Yi (s) = G21(s)Vi−1(s) + G22(s)Ui(s)

Yi (s)Ui (s)

Fig. 2. Block diagram of the control system for the ith vehicle.

We note that equation (12) corresponds to equation (6);
therefore, from Definition 1, the traffic jam never occurs
in the OV traffic model if the characteristic polynomial of
G(s), that is

d(s) := d(s) + k(1− e−sτ ),

is stable and the ‖G(s)‖∞ is 1 or less.
The main purpose of this section is to provide a way

how to design the feedback gain k and the delay time τ
such that d(s) is stable and ‖G(s)‖∞ is 1 or less.

First of all, we shall give a condition for d(s) to be sta-
ble. The well-known small gain theorem guarantees that
d(s) is stable if

‖G22(s)‖∞‖H(s)‖∞ < 1. (13)

The absolute value of G22(s) is

|G22(jω)| = 1√
h(ω)

,

where

h(ω) := w4 + a(a− 2Λ)w2 + a2Λ2.

When the traffic jam occurs in the OV model without
control (i.e., 2Λ < a), we have

inf
ω∈[0,+∞)

h(ω) =
a2(3a2 − 12aΛ+ 16Λ2)

4
·

Hence, H∞-norm of G22(s) is

‖G22(s)‖∞ =
2

a
√

3a2 − 12aΛ+ 16Λ2
·

On the other hand, it is easy to derive H∞-norm of H(s):

‖H(s)‖∞ = ‖k(1− e−sτ )‖∞ = 2|k|.

From small gain theorem (13), we notice that d(s) is stable
if the feedback gain k is chosen as

|k| < a
√

3a2 − 12aΛ+ 16Λ2

4
· (14)
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It should be noted that this condition does not depend on
the delay time τ .

Secondly, we have to design k and τ such that ‖G(s)‖∞
is 1 or less. The absolute value of G(s) can be described as∣∣G(jω)

∣∣ =

{aΛ+ k(1− cosωτ)}2 + k2 sinωτ2

{aΛ− ω2 + k(1− cosωτ)}2 + (ωa+ k sinωτ)2
· (15)

Since it is difficult to derive H∞-norm of G(s) analyt-
ically, we have to determine the gain k and the delay
τ such that

∣∣G(jω)
∣∣ is 1 or less for all ω ∈ [0,+∞) on

numerical simulations. A design procedure is summarized
as follows.

Theorem 1. Assume that the traffic jam occurs in the OV
model without control (i.e., 2Λ > a). If the feedback gain
k and the delay time τ satisfy condition (14) and

∣∣G(jω)
∣∣

is 1 or less for all ω ∈ [0,+∞) (i.e., ‖G(s)‖∞ ≤ 1), then
the traffic jam never occurs in the OV model with control.

Here we have a problem of checking ‖G(s)‖∞ ≤ 1 in
Theorem 1 numerically. In order to solve this problem, we
should achieve the following procedure: (i) draw the gain
diagram of G(s) by using equation (15); (ii) judge whether
the peak gain of the diagram is not more than 1. It is easy
to achieve this procedure on computers.

4 Numerical simulations

Let us consider a case where 100 vehicles are running on a
single road without overtaking under an open boundary.
The OV function is set as [1]

F (y) = tanh(y − xc) + tanh(xc),

where xc is a desired headway distance. The parameters
are set as a = 1.0, xc = 2.0, v0 = 0.964. The OV function
and these parameters in our simulations are the same as
the paper [1]. For all simulation results, we use Runge-
Kutta algorithm for numerical integration with time step
∆t = 0.01. The uniform random noise with maximum
amplitude 10−3 is added to the first equation of (2) for all
the vehicles.

First of all, we consider the OV traffic model without
control (i.e., k = 0 or τ = 0) on computer simulations. We
show the space-time plot of the running traffic model af-
ter t = 100 in Figure 3a. The horizontal axis represents a
distance between the lead vehicle and a following vehicle.
The vertical axis indicates the time development. It can
be seen that the upper vehicle group (see the right part
of Fig. 3a) run constantly with the lead vehicle velocity
v0; however, we observe the oscillating headway distances
in the lower vehicle group (see the left part of Fig. 3a).
Figure 3b shows the velocity behavior of the 1st, 50th, and
100th vehicles. The 1st vehicle runs constantly with veloc-
ity v0. The 50th vehicle velocity oscillates with accelerate-
decelerate actions. The 100th vehicle velocity also oscil-
lates, and the amplitude of this oscillation is larger than

(a)

100 200
0

1

2 v1(t) v50(t) v100(t)

time t

v i
(t

)

(b)

Fig. 3. Numerical simulation for the free-running traffic model.
(a) Space-time plot. (b) Temporal velocity behavior of three
vehicles.

that of 50th vehicle. These numerical results mean that
the traffic jam occurs in the OV traffic model.

Secondly, in order to suppress the traffic jam, we
have to determine the feedback gain k and the delay
time τ . From Theorem 1, we should choose the feedback
gain k such that it satisfies condition (14). Substitut-
ing the parameter values into condition (14), we obtain
|k| < 0.661437. Let us fix the gain at k = 0.5. Figure 4a
shows the absolute values of the transfer function

∣∣G(jω)
∣∣,

which is described by equation (15), for τ = 0, 1, 2. The
absolute value for τ = 0, which is the same as that with
no control, has a peak greater than 1. The value for τ = 2
has also a peak greater than 1. The value for τ = 1 is 1
or less for all ω ∈ [0,+∞); hence, the delay time τ = 1
satisfies the condition of Theorem 1. Furthermore, we es-
timate the absolute values for k = −0.5, 0.0, +0.5 when
the delay time is fixed as τ = 1.0 (see Fig. 4b). As you
see, we find that the value for k = 0.5 is 1 or less for all
ω ∈ [0,+∞). These numerical calculations guarantee that
the traffic jam never occurs in the OV traffic model with
the gain k = 0.5 and the delay time τ = 1.

Thirdly, we simulate the controlled traffic model.
Figure 5a shows the space-time plot of the controlled traf-
fic model after t = 100. There is no traffic jam in the OV
model. Figure 5b indicates the velocities of the 1st, 50th,
and 100th vehicles. It can be seen that all the vehicles
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Fig. 4. Gain diagram of G(jω). (a) k = 0.5. (b) τ = 1.

run constantly with speed v0. The control signals of the
1st, 50th, and 100th vehicles are shown in Figure 5c. We
can confirm that all the control signals are almost zero.
This numerical simulation substantiates that our theoret-
ical results are useful to suppress the traffic jam in the OV
model.

Finally, we consider the step external disturbance: the
lead vehicle slows down twice, that is

v0(t) =


v0/2 if 110 ≤ t ≤ 115,

v0/2 if 130 ≤ t ≤ 135,

v0 if otherwise.

The space-time plot of the no-control traffic model af-
ter t = 100 is shown in Figure 6a. Figure 6b shows the
velocity behavior of three vehicles. We find the traffic jam
in the OV traffic model. Figure 7a indicates the space-time
plot of the controlled traffic model. We see that there is
no traffic jam in the OV model. Figures 7b and 7c show
the temporal velocity behavior and the control signals for
the three vehicles. The minimum velocity and the ampli-
tude of the control signal decrease with increasing vehicle
number i. From this numerical simulation, we can say that
the controlled traffic model is robust for external distur-
bances.

(a)

100 200
0

1

2
v1(t):
v50(t):
v100(t):

time t

v i
(t

)

(b)

100 200

–0.2

0

0.2

u1(t):

u50(t):
u100(t):

time t

u
i(t

)

(c)

Fig. 5. Behavior of controlled traffic model. (a) Space-time
plot. (b) Temporal velocity behavior of three vehicles. (c) Con-
trol signals of three vehicles.

5 Conclusions

This paper showed that the continuous-time DDFC
method suppresses the traffic jam phenomenon in the OV
traffic model. We derived a procedure to design the feed-
back gain k such that the controlled traffic system to be
stable. Furthermore, we provide a numerical way to check
whether the feedback gain k and the delay time τ can
hold the H∞-norm of each vehicle transfer function to 1 or
less. Our control scheme has the following four advantages:
(i) The controller of each vehicle does not require other
vehicle information (e.g., other vehicle-velocity, -position,
-parameters, and so on); (ii) Each controller does not
need a desired velocity (i.e., the lead vehicle velocity v0);
(iii) Our control scheme is useful for any size traffic model;
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(a)

100 200
0

1

2 v1(t) v50(t) v100(t)

time t

v i
(t

)

(b)

Fig. 6. Behavior of no-control traffic model. The lead vehicle
slows down twice. (a) Space-time plot. (b) Temporal velocity
behavior of three vehicles.

(iv) There is no need to change the vehicle parameters.
These advantages are practical for real traffic flows. In
addition, we showed that the numerical simulations agree
well with our theoretical results.

It would be important to consider how to use our re-
sults for practical situations. Unfortunately, we can not
provide a concrete scheme to realize the control signal
ui(t) right now. We plan in the future to study the re-
alization of ui(t) for practical situations.

This research was partially supported by the Mazda Founda-
tion’s Research Grant.
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